2023
Thèse
AROUF Assia
Surface longwave cloud radiative effect derived from space lidar observations: An application to the Arctic.
Directeurs.rices de thèses : Chepfer H.
Fiche
Composition du jury
Mme. Céline Cornet ; Professeure, Lille Université/LOA, FR (Rapporteuse)
Mr. David M. Winker ; Senior Scientist, NASA LaRC, USA (Rapporteur)
Mme. Laurence Picon ; Professeure, Sorbonne Université/LMD, FR (Présidente)
Mr. Tristan S. L’Ecuyer ; Professeur, Wisconsin University, USA (Examinateur)
Mr. Vincent Noël ; Directeur de Recherche, CNRS/LA, FR (Examinateur)
Mme. Hélène Chepfer ; Professeure, Sorbonne Université/LMD, FR (Directrice)
Résumé
Les nuages jouent un rôle important dans la régulation du bilan énergétique à la surface de la Terre. Par exemple, ils absorbent le rayonnement tellurique émis par la surface de la Terre et le réémettent vers la surface, réchauffant ainsi cette dernière. Ce réchauffement peut être quantifié au travers de l’effet radiatif des nuages (Cloud Radiative Effect (CRE)) infrarouge (LongWave (LW)) à la surface. Cependant, il n’est pas bien connu en tout point du globe et sa variabilité instantané et interdécénale est mal connue. En effet, il dépend fortement de la distribution verticale des nuages qui n’est pas bien restitué à l’échelle globale. Dans cette thèse, nous proposons de restituer le CRE LW à la surface sur 13 ans (2008 − 2020) sur tout le globe en utilisant les observations du lidar Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). A partir de calculs de transfert radiatif 1D, nous établissons des paramétrisations linéaires entre le CRE LW à la surface et des propriétés nuageuses dont l’altitude des nuages. En combinant les paramétrisations avec les observations nuages, nous restituons le CRE LW à la surface, à l’échelle mensuelle (2° × 2°) et instantané à la pleine résolution horizontale de CALIPSO (90 m/330 m). Nous avons trouvé que les nuages réchauffent la surface de 27.0 W/m2 sur la période 2008−2020 à l’échelle globale. Le CRE LW à la surface est particulièrement important dans les régions polaires, où les nuages peuvent avoir un effet sur la fonte des glaces. En colocalisant instantanément le CRE LW à la surface et les observations de la banquise dans les régions où la concentration de la banquise Arctique varie, nous avons montré que les grandes valeurs du CRE LW à la surface (> 80 W/m2 ) sont beaucoup plus fréquentes au-dessus des océans ouverts que de la banquise en fin d’automne. Nos résultats suggèrent que les nuages peuvent retarder la reconstruction de la banquise plus tard dans la saison.
Abstract
Clouds play an important role in regulating Earth’s energy budget at the surface. For example, clouds absorb thermal radiation emitted by Earth’s surface and reemit it toward the surface and warming the surface. This can be quantified through surface LongWave (LW) Cloud Radiative Effect (CRE). However, surface LW CRE on a global scale is not well retrieved and its instantaneous and interdecadal variability is poorly known. Indeed, it depends highly on vertical cloud distribution, which is poorly documented globally. In this thesis, we propose to retrieve the surface LW CRE over 13 years (2008 − 2020) at a global scale using Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spaceborne lidar observations. From 1D radiative transfer computations, we establish linear parametrizations between surface LW CRE and cloud properties including cloud altitude. Combining the parametrizations with the cloud observations, we derive two datasets of surface LW CRE, at monthly–2° × 2° gridded scale and instantaneously at full CALIPSO horizontal resolution (90 m cross-track; 330 m along orbit-track). We found that clouds warm the surface by 27.0 W/m2 over the 2008 − 2020 time period at a global scale. Surface LW CRE is particularly important in polar regions such that clouds may have an effect on ice melting. By instantaneously co-locating surface cloud warming and sea ice observations in regions where sea ice varies, we showed that large surface cloud warming values (> 80 W /m2 ) are much more frequent over open water than over sea ice during late Fall. Our results suggest that clouds may delay sea ice freeze-up later into the Fall.